# TOPIV ROBOT (OPTIMIZATION / SERVICE)

INQUIRY: HYROBOTICS CORP SAM LEE (Email : hanrobotic@msn.com) 5988 MID RIVER MALL DR. ST.CHARLES MO 63304 TEL : 1-636-578-6059 FAX : 1-866-232-5594



ADJUST SPEED TO HAVE OPTIMIZED FUNCTION ! MAKE SURE THERE IS NO VIBRATION OR SHOCK NOIZE AT THE END OF STROKE : ALSO REQUIRED TO ADJUST AIR CUSHION ( SEE NEXT FEW PAGE )

2. Maintenance

# • **STEP 1**

2.2.9 Speed Control for Down, Swing, Kick

Normally it is not necessary to adjust speeds because they are factory set.

Power On.



# • **STEP 2**

In the manual mode, press each button to operate each axis. Adjust motion speed with speed control valve ( Air flow control valve )

| Manual             | 032  |        |
|--------------------|------|--------|
| <b>★ → 承</b> 주     | ۲J   | $\sim$ |
| <b>◆ </b> ◆\$₽ ∯ ∏ | ⊡ [+ | ĒC     |
|                    |      | ì      |

Adjust screw CW for decreasing, CCW for increasing speed.  $2^{nd}$  extension speed controller controls the extension speed when dropping the part outside the mold.

Main Arm Down

Sub Arm Down



[ROTATION]



[A, X, XC, XN TYPE]

Main Arm Down

[Twin TYPE]

# 2.2.10 Cushion Control for Up, Kick, Swing

The cushions are adjusted to optimum condition at the factory. You should not need to adjust them If required, follow below step.

**WARNING** Adjusting Cushion should be done after adjust the speed control



### • STEP 1

Turn off Power. Supply the air pressure to the system



## STEP 2

Up cushion adjust screw will control the shock absorbing ability for Up motion of cylinder Adjust screw CW for increasing cushion , CCW for decreasing cushion.



#### STEP 3

Adjust Kick cushion with kick Cushion adjust screw.

Adjust screw CW for increasing cushion, CCW for decreasing cushion





# STEP 3

Adjust Kick return cushion with kick return Cushion adjust screw.

Adjust screw CW for increasing cushion, CCW for decreasing cushion

# • STEP 4

Adjust swing cushion with swing cushion adjust screw. Adjust screw CW for increasing cushion \_ CCW for

Adjust screw CW for increasing cushion , CCW for decreasing cushion .



# **STEP 5**

Adjust swing cushion with swing return cushion adjust screw.

Adjust screw CW for increasing cushion , CCW for decreasing cushion .

# 

Do not enter robot motion area. If anyone enter the robot motion area during Auto operation or Manual Operation, serious accident could results.

# MINIMIZE SHOCK AT THE END OF STROKE WHILE ADJUSTING SPEED AND CUSHION FOR EACH OPERATION. IF YOU CHANGE THE SPEED OF ROBOT , MIGHT NEED TO RE ADJUST CUSHION TOO

50 Instruction Manual

# 3.1 Preventative Maintenance Schedule

Before you start daily operation of the robot, perform preventive maintenance. .

#### - Daily

- Check air Pressure is  $4 \sim 5 \text{ kg/cm}^2$  or  $4 \sim 5 \times 10^5$  Pa(Gauge)]
- Inspecting filter regulator unit : Check the bowl for water and contamination and for correct pressure.
- Check Hoses and Cables : Check for kinks, cuts and tears. Replace as needed.
- Inspecting Shock absorbers and cushions. : Make sure the are operating smoothly
- Checking Gripper return spring : Check that the gripper return spring is operating properly
- Checking residue buildup: Inspect the shafts and gripper for buildup of plastic residue. Clean as necessary.
- Checking Interlock functions. : Make sure the interlock functions are working properly.
- Checking part verification: Check that the parts verification is working properly.
- Check Suction cups

#### - Weekly or as often as needed.

- <u>Check EOAT mounting screw including gripper</u>: Check EOAT screw for tightness. Tighten as required.
- Inspecting fittings and mounting hardware : Check all fittings, screws, and component mounting hardware for tightness. Tighten as needed.
- Check the safety latch cylinder for descent. : Make sure the safety latch cylinder is working properly
- Testing the Emergency Stop Button. : Verify that the emergency stop works properly.
- Check angle of rotation and <u>bolts tightness</u>: Check for correct angle of rotation of the arm.
   Adjust as necessary. Tighten as required. Heavy Vibration will cause to loose the bolts for short period

#### - Monthly

- Inspecting the filter regulator : Check that the filter regulator is set at the correct pressure.
   Check the filter and clean or replace it as needed.
- Checking the solenoid valves : Check that the solenoid Valves are working properly. Replace as needed.
- Checking all electrical cables : Inspect all electrical cables for cuts, burns and replace as required

time, Make sure split washers are installed with loc-tite thread sealant for fixed mounting bolts. Do not apply loc-titel bolts

sealant to the bolts on adjustable parts like stroke adjustment

- Checking the exhaust filter.
- Inspecting electrical terminal : <u>Check all electrical terminals for tightness</u>, adjust as required.
- Inspect each axis cylinder, make sure operation and the cushion is working properly
- Inspect body for any damage during mold set up or other operation.

# **3.2** Cleaning the Robot

Recommend to clean each parts once a every month for maintenance. Use clean and dried paper towel or cotton towel.

**WARNING** Never try to clean up the robot with Water. It might damage the robot or electric shock may occur

- Lock out/ Tag out before maintenance
- Oil need to be applied after clean the guide shaft for longer life



1. Pneumatic

#### 1.1. Pneumatic Solenoid Valve Layout



<A, X, XC Type Sol Valve>



<Twin Type Sol Valve>



<X, XC, TWIN Type Sensor Location >

3. Handy Controller

TP(Teach Pendent)



① TP Connector (10 Pin Connector )



| No.  | Internal Signal     |  |
|------|---------------------|--|
| 1, 9 | P24V                |  |
| 2    | Robot E-Stop Output |  |
| 3    | TX (232C)           |  |
| 4    | RX (232C)           |  |
| 5    | GND                 |  |
| 6    | IMM E-Stop Input    |  |
| 7    | 24V                 |  |
| 8    | 24V                 |  |
| 10   | GND                 |  |



#### When the Power of Robot is off, Robot E-Stop is not working.

When Handy Controller power is off, Robot E-Stop is not working because Robot E-Stop relay is On (Used Normally Closed Contact). If Robot E-Stop is working while Robot Power is turned off, please check Robot E-Stop Relay. Also with Robot Power turned on, if E-Stop is not working with Robot E-Stop pressed, please check Robot E-Stop Relay. Robot E-Stop button will not work while the Power is not on.

① Input (12 Pin Connector , J1)



| Pin No. | Signal Name          | Robot Signal |
|---------|----------------------|--------------|
| 01      | Alarm Output         | Y28          |
| 02      | Swing Return         | Y2F          |
| 03      | Sub Arm Up/Down      | Y2D          |
| 04      | Sub Arm Kick/Return  | Y2E          |
| 05      | Main Arm Up/Down     | Y20          |
| 06      | Main Arm Kick/Return | Y21          |
| 07      | Main Arm Gripper     | Y22          |
| 08      | Swing                | Y23          |
| 09      | Chuck Rotation       | Y24          |
| 10      | Vacuum               | Y25          |
| 11      | Nipper               | Y26          |
| 12      | Sub Arm Gripper      | Y27          |

| 10 |  |  |  |  | 1   |
|----|--|--|--|--|-----|
|    |  |  |  |  |     |
| Г  |  |  |  |  | - I |

| Pin No. | Signal Name              | Robot Signal |
|---------|--------------------------|--------------|
| 01      | P24V                     | P24V         |
| 02      | Sub Arm Ascent Complete  | X1G          |
| 03      | Main Arm Ascent Complete | X11          |
| 04      | Main Arm Grip Confirm    | X16          |
| 05      | Vacuum Confirm           | X17          |
| 06      | Sub Arm Grip Confirm     | X1F          |
| 07      | Extra Input              | R01          |
| 08      | Swing Input              | X14          |
| 09      | Swing Return Input       | X15          |
| 10      | GND                      | GND          |

③ Swing Complete Sensor Input (3Pin Connecot, J8) – Same as I.O Board

| Pin No. | Signal Name    | Robot Signal |
|---------|----------------|--------------|
| 1       | GND Signal     |              |
| 2       | Swing Complete | X14          |
| 3       | +24V Output    |              |

④ Swing Return Complete Sensor Input (3Pin Connecot, J9) – Same as I.O Board

| 3 | 1 |
|---|---|
|   |   |

| Signal Name           | Robot Signal                                                      |
|-----------------------|-------------------------------------------------------------------|
| GND Signal            |                                                                   |
| Swing Return Complete | X15                                                               |
| +24V Output           |                                                                   |
|                       | Signal Name<br>GND Signal<br>Swing Return Complete<br>+24V Output |

(5) E-STOP Connector (2P Connector, J4) – IMM or Robot is in Emergency Stop, Output is on



| Pin No. | Signal Name   | Robot Signal |
|---------|---------------|--------------|
| 1       | E-Stop Safety | Y2G          |
| 2       | +24V output   |              |

6 Power Connector



| Pin No. | Signal Name |
|---------|-------------|
| 1       | GND Input   |
| 3       | 24V Input   |
| 4       | 5V Input    |
| 5       | GND Input   |
|         |             |
|         |             |
|         |             |
|         |             |
|         |             |
|         |             |
|         |             |

#### ⑦ Robot Connector

| Pin | Signal Name            | Pin No. | Signal Name          |
|-----|------------------------|---------|----------------------|
| 1   | Cycle Start 1          | 14      | Safety Door Closed + |
| 2   | Cycle Start 2          | 15      | Safety Door Closed - |
| 3   | Mold Close Interlock 1 | 16      | Injection in Auto +  |
| 4   | Mold Close Interlock 2 | 17      | Injection in Auto -  |
| 5   | Mold Open Interlock 1  | 18      | Spare                |
| 6   | Mold Open Interlock 2  | 19      | Conveyor             |
| 7   | Ejector Control 1      | 20      | Part Rejection       |
| 8   | Ejector Control 2      | 21      | Full Auto            |
| 9   | IMM E-Stop 1           | 22      | Alarm                |
| 10  | IMM E-Stop 2           | 23      | Robot E-Stop 1       |
| 11  | Mold Open Complete -   | 24      | Robot E-Stop 2       |
| 12  | Mold Open Complete +   | 25      | IL_GND               |
| 13  | IL_24V                 |         |                      |

#### 8 Connector for Robot not in Use

9 TP Connector (DSUB 9Pin Connector )



| Pin No. | Signal Name        |  |
|---------|--------------------|--|
| 1       | P24V               |  |
| 2       | Robot E-Stop Input |  |
| 3       | RX (232C)          |  |
| 4       | TX (232C)          |  |
| 5       | GND                |  |
| 6       | IMM E-stop Input   |  |
| 7       | 24V                |  |
| 8       | 24V                |  |
| 9       | GND                |  |

#### 10 IL POWER Jumper

When Robot or IMM is in Emergency Stop, IL Power Relay (Power Interlock) is off and all other relay will be off. Solenoid Valve will not operate and robot will stop operation. And Pneumatic Shutdown signal will come out until E-Stop is released

Need to Install IL\_POWER Relay, Cut S7, POWER in Interlock Board

#### 1 IMM E-stop Jumper

When you want to use IMM E-Stop to activate Robot E-Stop , Cut Jumper between S4 and MEMGIF (Interface board)





| Pin NO | Signal Name            | Robot Signal |
|--------|------------------------|--------------|
| 01     | Sub Arm Gripper        | Y27          |
| 02     | Nipper                 | Y26          |
| 03     | Vacuum                 | Y25          |
| 04     | Chuck Rotation         | Y24          |
| 05     | Swing                  | Y23          |
| 06     | Main Arm Gripper       | Y22          |
| 07     | Main Arm Kick / Return | Y21          |
| 08     | Main Arm Up / Down     | Y20          |
| 09     | Sub Arm Kick / Return  | Y2E          |
| 10     | Sub Arm Up / Down      | Y2D          |
| 11     | Swing Return           | Y2F          |
| 12     | Output Alarm           | Y28          |

② Output (10Pin Connector)

|    | _ | _ | _ | _ | _ | _ | _ | _ | _ |
|----|---|---|---|---|---|---|---|---|---|
|    | Ц | Ц | Ц | Ц | Ц | Ц | Ц | Ц | Ц |
| 10 |   |   |   |   |   |   |   |   | 1 |

| Pin NO | Signal Name                 | Robot Signal |
|--------|-----------------------------|--------------|
| 01     | GND                         | GND          |
| 02     | Swing Return Complete Input | X15          |
| 03     | Swing Complete Input        | X14          |
| 04     | Extra Input                 | R01          |
| 05     | Sub Arm Gripper Confirm     | X1F          |
| 06     | Vacuum Confirm              | X17          |
| 07     | Main Arm Grip Confirm       | X16          |
| 08     | Main Arm Ascent Complete    | X11          |
| 09     | Sub Arm Ascent Complete     | X1G          |
| 10     | P24V                        | P24V         |

#### 4. Cable

#### 4.1 TOPIV Interlock cable



[D-SUB 25P FEMALE]

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |         |                        |                                                      |          |                |
|-------------------------------------------------------|---------|------------------------|------------------------------------------------------|----------|----------------|
| Pin No                                                | Wire No | Signal Name            | Signal Description ( Normally )                      | In / Out | Color(0.5SQ)   |
| 1                                                     | Н       | Cycle Start 1          | IMM Cycle Start Output 1 ( On / Off Contact )        | OUT      | Black + White  |
| 2                                                     | G       | Cycle Start 2          | IMM Cycle Start Output 2 ( On / Off Contact )        | OUT      | Black          |
| 3                                                     | L       | Mold Close Interlock 1 | Mold Close Interlock Output 1 ( On / Off Contact )   | OUT      | Green + White  |
| 4                                                     | К       | Mold Close Interlock 2 | Mold Close Interlock Output 2 ( On / Off Contact )   | OUT      | Green          |
| 5                                                     | I       | Mold Open Interlock 1  | Mold Open Interlock 1 ( On / Off Contact )           | OUT      | Brown          |
| 6                                                     | J       | Mold Open Interlock 2  | Mold Open Interlock 2 ( On / Off Contact )           | OUT      | Brown + White  |
| 7                                                     | М       | Ejector Control 1      | Ejector Control Output 1 ( On / Off Contact )        | OUT      | Blue           |
| 8                                                     | Ν       | Ejector Control 2      | Ejector Control Output 2 ( On / Off Contact )        | OUT      | Blue + White   |
| 9                                                     | ED      | IMM E-Stop 2           | IMM E-Stop Input 1 ( On / Off Contact )              | IN       | Green + Yellow |
| 10                                                    | EC      | IMM E-Stop 1           | IMM E-Stop Input 2 ( On / Off Contact )              | IN       | Red + Yellow   |
| 11                                                    | F       | Mold Open Complete -   | Mold Open Complete 2( DC 0 Volt Required )           | IN       | Gray           |
| 12                                                    | С       | Mold Open Complete +   | Mold Open Complete 1 ( DC +24 Volt Required )        | IN       | White          |
| 13                                                    | 24V     | IL_24V                 | + 24 Volt ( Can be used for SPI, Euromap Interlock ) | -        | Red            |
| 14                                                    | C2      | Safety Door Closed +   | Safety Door Closed 2( DC +24 Volt Required )         | IN       | Purple         |
| 15                                                    | Е       | Safety Door Close -    | Safety Door Closed 1( DC 0 Volt Required )           | IN       | Yellow         |
| 16                                                    | C1      | Injection in Auto +    | IMM Injection in Auto 2( DC +24 Volt Required )      | IN       | Red + Green    |
| 17                                                    | D       | Injection in Auto -    | IMM Injection in Auto 1( DC 0 Volt Required )        | IN       | Orange         |
| 18                                                    | SP      | Spare                  | -                                                    |          | Sky            |
| 19                                                    | CONV    | Conveyor               | Conveyor Digital Output                              | OUT      | Red + Blue     |
| 20                                                    | REJ     | Reject                 | Reject Digital Input ( Connect 0V from Robot)        | IN       | Yellow + Black |
| 21                                                    | R       | Full Auto              | Full Auto Digital Input ( Connect 0V from Robot)     | IN       | Red + Black    |
| 22                                                    | BUZZ    | Alarm                  | Alarm Digital Output                                 | OUT      | Yellow + Red   |
| 23                                                    | EB      | Robot E-Stop 1         | Robot E-Stop 1 Output ( On / Off Contact )           | OUT      | Red + White    |
| 24                                                    | EA      | Robot E-Stop 2         | Robot E-Stop 2 Output ( On / Off Contact )           | OUT      | White + Red    |
| 25                                                    | 0V      | IL_GND                 | Not used for over 20mmA                              | -        | Pink           |

#### 4.2 TOPIV Handy Controller Cable

#### Unit: mm



1 10

| Interlock Box ( On Robot ) D-SUB 9M |                    | Handy Contoller MOLEX-10P |        |                     |        |
|-------------------------------------|--------------------|---------------------------|--------|---------------------|--------|
| Pin No                              | Signal Name        | Color                     | Pin No | Signal Name         | Color  |
| 1                                   | P24V               | Red                       | 1,9    | P24V                | Red    |
| 2                                   | Robot E-Stop Input | White                     | 2      | Robot E-Stop Output | White  |
| 3                                   | RX (232C)          | Green                     | 3      | TX (232C)           | Green  |
| 4                                   | TX (232C)          | Blue                      | 4      | RX (232C)           | Blue   |
| 5                                   | GND                | Black                     | 5      | GND                 | Black  |
| 6                                   | IMM E-Stop Input   | Gray                      | 6      | IMM E-Stop Input    | Gray   |
| 7                                   | 24V                | Purple                    | 7      | 24V                 | Purple |
| 8                                   | 24V                | Yellow                    | 8      | 24V                 | Yellow |
| 9                                   | GND                | Orange                    | 10     | GND                 | Orange |

#### 4.3 Interlock Board and I.O Board Connetion

#### Unit: mm



| MOLEX 10P   |                        |              |            |  |
|-------------|------------------------|--------------|------------|--|
| Pin No      | Signal                 | Robot Signal | Color      |  |
| MOLEX10, 01 | GND                    | GND          | Red        |  |
| MOLEX10, 02 | Swing Return Input     | X15          | L Yellow   |  |
| MOLEX10, 03 | Swing Input            | X14          | Red        |  |
| MOLEX10, 04 | Extra Input            | R1           | Green      |  |
| MOLEX10, 05 | Sub Arm Grip Confirm   | X1F          | Red        |  |
| MOLEX10, 06 | Vacuum Confirm         | X17          | L Gray     |  |
| MOLEX10, 07 | Main Grip Confirm      | X16          | Red        |  |
| MOLEX10, 08 | Main Ascent Complete   | X11          | Crange     |  |
| MOLEX10, 09 | Runner Ascent Complete | X1G          | Red        |  |
| MOLEX10, 10 | P24V                   | P24V         | L<br>Brown |  |



| Power  |            |       |  |
|--------|------------|-------|--|
|        |            |       |  |
| Pin No | Signal     | Color |  |
| 1      | 110 ~ 220V | Black |  |
| 2      | 110 ~ 220V | White |  |
| 3      | Ground     | Green |  |

| Power Supply |            |       |  |  |
|--------------|------------|-------|--|--|
| MOLEX 5P     |            |       |  |  |
| Pin No       | Signal     | Color |  |  |
| 1            | Ground     | Green |  |  |
| 3            | 110 ~ 220V | Black |  |  |
| 5            | 110 ~ 220V | White |  |  |

#### 4.5 Power Supply from 24V to Interlock Board



Installed in Board

| Interlock Board MOLEX 5Pin |               |       |  |  |
|----------------------------|---------------|-------|--|--|
| Pin No                     | Pin No Signal |       |  |  |
| 1                          | GROUND        | BLACK |  |  |
| 3                          | 24V INPUT     | RED   |  |  |
| 4                          | 5V INPUT      | WHITE |  |  |
| 5                          | GNDINPUT      | BLACK |  |  |

#### 5. Interlock

#### 5.1 Interlock Status in Manual Mode

- ① Ejector : ON, Mold Open Interlock : ON
- 2 While Robot arm is descent Position, Mold Close Interlock is OFF
- ③ External Waiting Function is in USE, Mold Close Interlock is OFF until Robot arm is in external waiting function
- ④ Injection in Auto : ON (Pulse), Mold Close Interlock is off when Mold Open Complete is ON

#### 5.2 Interlock Status in Auto Mode

- ① Ejector control is OFF, Mold Interlock is ON (Initial Status )
- ② Ejector control is ON : When Robot arm down and Kick
- ③ Ejector control is Off : Take out and ascent complete, Mold is Closed
- ④ Mold Close Interlock is ON : External Waiting Function is not in use, Ascent Complete ON, Takeout Complete ON.
- 5 Mold Close Interlock is ON : External Waiting Function is in use, Ascent Complete ON, Swing On, Takeout Complete ON.
- 6 Mold Close Interlock is Off : Injection in Auto is ON( Pulse), Mold Close Complete is ON
- Pressing Auto button, : When Mold Open Complete On, Take out complete is On. When Mold Open Complete is Off, Take Out Complete is Off
- 8 After release the sprue or products, When the robot is in Ascent position, Conveyor is ON(Pulse)

# **Injection Molding Machine and Robot Interface Interlocking.**

without SPI Plug

Read carefully and make sure all the voltage and wiring with actual IMM operation. (Not following all the step might cause damage on IMM and Robot.)

#### Products : HYRobotics TOPIV Sprue Picking Robot

#### FROM IMM TO ROBOT ( IMM TEST )

After finishing Robot body set up. Must test all the IMM voltage ( DC 24, AC 110 or Contact ) with actual operation.

**Emergency Stop** 

- 1. Locate Emergency Stop Wiring No. (Two Point Required )
- For Example ES1(Emergency Stop1) and ES2 (Emergency Stop 2).
- 3. PRESS Emergency Stop Button
- 4. Measure Voltage ES1 and ES2 ( DC 0 Volts, AC 0 Volts or No Continuity )
- 5. Release Emergency Stop Button
- 6. Measure Voltage ES1 and ES2 ( DC 24 Volts, AC 110 Volts or Continuity )

Mold Open Limit

- 1. Locate Mold Open Complete (Limit) Wiring No. (Two Point Required)
- 2. For Example MOC1(MoldOpenComplete1) and MOC2 (MoldOpenComplete 2).
- 3. Mold Close
- 4. Measure Voltage MOC1 and MOC2 ( DC 0 Volts, AC 0 Volts or No Continuity )
- 5. Mold Open
- 6. Measure Voltage MOC1 and MOC2 ( DC 24 Volts, AC 110 Volts or Continuity )

Safety Door Closed

- 1. Locate Safety Door Closed Wiring No. (Two Point Required)
- 2. For Example SDC1 (Safety Door Closed1), and SDC2 (Safety Door Closed 2).
- 3. Close Safety Door
- 4. Measure Voltage SDC1 and SDC2 ( DC 0 Volts, AC 0 Volts or No Continuity )
- 5. Open Safety Door
- 6. Measure Voltage SDC1 and SDC2 ( DC 24 Volts, AC 110 Volts or Continuity )

**Injection Signal** 

- 1. Locate Injection Signal Wiring No. (Two Point Required)
- 2. For Example IS1 (Injection Signal 1), and IS2 (Injection Signal 2).
- 3. Measure Voltage IS1 and IS2 with No Injection
- 4. (DC 0 Volts, AC 0 Volts or No Continuity)
- 5. Measure Voltage IS1 and IS2 with Injection
- 6. ( DC 24 Volts, AC 110 Volts or Continuity )

#### Full Auto

- 1. Locate Full Auto Wiring No. (Two Point Required)
- 2. For Example FA1 ( Full Auto 1) , and FS2 ( Full Auto 2 ).
- 3. Measure Voltage FA1 and FA2 without Full Auto
- 4. ( DC 0 Volts, AC 0 Volts or No Continuity )
- 5. Measure Voltage FA1 and FA2 with Full Auto
- 6. ( DC 24 Volts, AC 110 Volts or Continuity )

#### Mold Close Limit (Might Not Required)

- 1. Locate Mold Close Complete (Limit) Wiring No. (Two Point Required)
- 2. For Example MCC1(MoldCloseComplete1) and MCC2 (MoldCloseComplete 2).
- 3. Mold Close
- 4. Measure Voltage MCC1 and MCC2 ( DC 0 Volts, AC 0 Volts or No Continuity )
- 5. Mold Open
- 6. Measure Voltage MCC1 and MCC2 ( DC 24 Volts, AC 110 Volts or Continuity )

There might be same common and write down the each number that actu

ally reading from Voltmeter.

#### FROM ROBOT TO IMM (ROBOT TEST)

After Mounting the robot on IMM, even though Robot fully tested before shipping, we recommend actual voltage or contact reading from Robot before wiring IMM. After finishing IMM Electric Test recommended test all the ROBOT wire and Make sure all the relay and cable is working properly with (Contact On and Off) with actual robot operation.

To turn on the Robot, Connect the Power and Make Jumper on EC, ED ( IMM E-Stop )

Cable Test

 1.
 Test Continuity between C, C1, C2 ( Each of two wire ) : No Continuity

 2.
 Test Continuity between D, E, F ( Each of two wire ) : No Continuity

(There should no continuity on each of two wire)

Robot E-Stop Test

- 1. Test Continuity EA and EB with No Robot E-Stop ( Continuity )
- 2. Press Robot E-Stop
- 3. Test Continuity EA and EB ( No Continuity )

Mold Close Interlock

- 1. Adjust Robot arm stroke to prevent damaging Robot arm or mold
- 2. Test Continuity Between K and L ( Continuity )
- 3. Press Descent Button
- 4. Test Continuity Between K and L ( No Continuity )

Ejector Interlock need to run with Molding Machine ( In Auto Mode ) N, M ( Continuity in Manual ) Auto Cycle Start need to run with Molding Machine ( In Auto Mode ) G, H ( No Continuity in Manual )

Follow instruction Manual to test Ejector Interlock and Auto Cycle Start

Also it's possible to test robot relay without IMM operation.

Mold Open Complete ( C. F ), Safety Door Closed, ( C2, E ), Auto Injection ( C1, D ).

From Robot wire

Test : Mold Open Complete ( C. F )

Supply 0 Volt to F and 24 Volt to C, It will activate Mold Open Complete relay ( RED Bright LED ) Supply 0 Volt to C and 24 Volt to F, It will activate Mold Open Complete relay ( But No LED )

Test : Auto Injection (C1, D)

Supply 0 Volt to D and 24 Volt to C1, It will activate Auto Injection relay ( RED Bright LED ) Supply 0 Volt to C1 and 24 Volt to D, It will activate Auto Injection relay ( But No LED )

Test : Safety Door Closed, (C2, E)

Supply 0 Volt to E and 24 Volt to C2, It will activate Safety Door Closed relay ( RED Bright LED ) Supply 0 Volt to C2 and 24 Volt to E, It will activate Safety Door Closed relay( But No LED )

Test : IMM Full Auto Signal ( R ( Red + Black ) )

Also Supply 0 Volt to R, Will see Full Auto Icon in Handy Controller Screen.

Make sure all the test is working properly and Follow interface interlock

If you have any question, Please contact

Sam Lee (Tel: 1-636-578-6059)



HYROBOTICS CORP. 5988 MID RIVER MALL DR. ST.LOUIS MO 63304 Www.hyrobot.com 6. Layout

6.1 XC TYPE

6.1.1 XC-550





#### 6.1.3 XC-550 Pull out Assembly



#### 6.1.4 XC-550 Vertical Assembly



#### 6.1.5 XC-550 Swivel Cylinder Assembly









#### 6.2 TWIN , 6.2.1 TWIN 650









#### 6.2.4 TWIN-650 Vertical Assembly

#### 6.2.5 TWIN-650 Swivel Cylinder Assembly







